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A THEORETICAL INVESTIGATION OF THE LATERAL OSCILLATIONS OF AN AIRPLANE
WITH FREE RUDDER WITH SPECIAL REFERENCE TO THE EFFECT OF FRICTION

By Harry GREENBERG and LEONARD STERNFIELD

SUMMARY

Charts showing the variation in dynamic stability with the
rudder hinge-moment characteristics are presented. A stabiliz-
ing rudder floating tendency combined with a high degree of
aerodynamic balance is shown to lead to oscillations of increas-
ing amplitude. This dynamic instability s increased by
viscous friction in the rudder control system.

The presence of solid friction in the rudder control system
will cause steady oscillations of constant amplitude if the
ﬂoatmg angle of the rudder per unit angle of sideslip is stabiliz-
ing and greater than a certain critical value that depends on
other airplane parameters, such as vertical-tail area and air-
plane moment of inertia about the vertical axis. The ampli-
tude of the steady oscillation 18 proportional to the amount of
friction and is generally quite small but increases as the condi-
tion of dynamic instability is approached.

An approzimate method of caleulating the amplitudes of
the steady oscillation is explained and is llustrated by a numer-
ical example. A more exact step-by-step calculation of the
motion 18 also made and it i8 shown that the agreement with the
approximate method 18 good.

INTRODUCTION

Flight tests have shown that, under certain conditions of
rudder balance, undamped lateral oscillations may occur
when the control is freed.: The oscillations involve coupling
botween yawing motions of the airplane and movements
of the rudder and depend on the amount of friction in the
rudder control system. A previous theoretical investigation
(reference 1) showed the existence of these unstable oscilla-
tions but did not cover a sufficiently large range of the
variables, particularly of the rudder floating-moment para-
meter. The importance of this parameter has been empha-
sized by the recent interest in control surfaces having a
positive, or stabilizing, floating tendency—that is, surfaces
the free movements of which tend to oppose any disturbance
of the airplane.

Theoretical celculations (reference 2) have shown that,
for a rudder having a stabilizing floating tendency, increases
in rudder damping may cause unstable oscillations. A
general discussion of the effect of friction in producing
oscillations of limited magnitude under these conditions is
given in an unpublished document by Schairer and Bush of
Boeing Aiveraft Co.

Because of the advantages in using a rudder with a positive
floating tendency, the undamped oscillations that may
occur when,such a surface is used have been fully investi-
gated. The present report gives the results of a theoretical
investigation of the subject and deals primarily with the
effects of friction on the stability of the oscillations in yaw
of an airplane with rudder free. The effects of rudder
inertia and mass balance, airplane inertia, weathercock
stability, and rudder effectiveness are also treated.

SYMBOLS
b wing span

Cy hinge-momeant coefficient (H/%V*S,c,)

Ch

£

frictional hinge-moment coefficient (H ,/%V*S,-c,)

Cry= bO’ =2 Ohps= _DTS’ and so forth

Ohm, effective increment in viscous-damping coefficient
due to solid friction
¢ rudder chord

D differential operator (d/as)
H hinge moment
H, frictional hinge moment

k, radius of gyration of rudder about hinge axis, divided
by semispan

kx radius of gyration of airplane about vertical axis,

divided by semispan
l teil length divided by wing semispan
m mass of airplane -
m,  mass of rudder
8 distance traveled in semispans (2Vi/b)
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wing aren
A rudder area

i time

1% airspeed

z, distance of rudder center of gravity behind hinge,
divided by semispan

a, effective angle of attack of vertical tail

) angle of rudder deflection measured from neutral
position, radians

8 amplitude of rudder oscillation

€ angle of lag (angle between the position of the rudder
and the position of the airplane) .

A complex roots of stability equation (u--17)

G airplane density ratio (m/pSh)

Br rudder density ratio (m,/pS:c;)

density of air

angle of yaw, radians

<l &« v

amplitude of yaw oscillation
METHOD OF ANALYSIS

The only motions considered in the analysis are a yawing
of the airplane about its center of gravity and a rotation of
the rudder about its hinge. It was shown in reference 3
that the oscillatory stability of an airplane with these two
degrees of freedom is essentially the same as when the addi-
tional degrees of freedom—that is, rolling and lateral
motion—are taken into account. The equations of motion
for two degrees of freedom are developed in appendix A.
These equations can be obtained from the equations given
in reference 1, which include the effect of lateral motion, by
making the angle of sideslip equal and opposite to the angle
of yaw.

The solution of the equations shows that the motion, in
most cases, consists of two superimposed oscillations: one
of longer period involving a sensible coupling between yavw-
ing of the airplane and swinging of the rudder and the other
of shorter period, which corresponds to the oscillation of
the rudder when the airplane is acting as a rigid support.
The longer-period oscillation has the lower damping and is
therefore the one of interest. The period and damping of
this oscillation, when given as the distance traveled along
the flight path expressed in terms of some characteristic

length of the airplane, are independent of speed and, pro- |

vided the density parameter p is constant, of airplane size
and weight.
Orn the basis of the equations for two degrees of freedom,
the oscillatory stability depends on the following factors:
Airplane and rudder mass characteristics as expressed by

pkz? airplane moment of inertia

A
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ik, rudder moment of inertia
w2zl rudder product of inertia

Yawing-moment characteristics of airplane as expressed by
C., weathercock stability
C.,, damping in yawing

Yawing-moment characteristics of rudder as expressed by
Chs

Csps yawing-moment variation with angular velocity of
rudder

rudder effectiveness

Rudder hinge-moment characteristics as expressed by
Ch, floating-moment parameter )
Chpy hinge-moment variation with yawing
Ohs

Chps Tudder damping parameter

restoring-moment parameter

Ingsmuch as only the aerodynamic or viscous damping
Chps can be conveniently treated in the equations, it is
necessary for the analysis to assume an equivalence between
the actual solid friction and a fictitious viscous {friction.
This equivalence is chosen in such o way that the energy
consumed by the solid friction is equal to that consumed by
the viscous friction during each cycle. The method of
dealing with this equivalence is detailed and discussed in
appendix B. The error involved is such that the equations
do not show the small irregularities in the motion that will
actually result from the presence of the friction. The periods,
amplitudes, and conditions for stability, which depend on
averaged values, should, however, be reproduced accurately
enough.

The study of the effect of the different factors on the
rudder-free motion of the airplane was made by a series of
computations for the “average’” airplane of reference 1 in
which the variation of the period and the damping of the
lateral oscillation with Cn, and Chy was determined for
various representative values of the other parameters.
The basic or average values of the parameters are given as
follows:

pRg .. 0.926  Cayoncmccmmcmcmc o —0.084
P 0.0222  Cpppmmemme e —0.007
By oo 0.0 Oy —0.076
b e 0818 @ ~0.0053
o/ P 0.918 Chy  Cppyom e mmmmemm e —0.11

RESULTS AND DISCUSSION

‘In geuneral, the equations of motion show that, with a
rudder having a positive floating tendency, restriction or
damping of the rudder movements introduces o lag in the rud-
der motion that reduces the damping of the lateral oscilla-
tion and that may result in continuous or unstable oscilla-
tions. If the rudder damping is due to solid friction, the
phase lag decreases with an increase in amplitude and the
oscillations are continuous aud steble; that is, the oscillations
are limited to a definite amplitude which depends on the
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friction. Aerodynamic or viscous damping of the rudder,
however, causes a phase lag that does not change with ampli-
tude; hence, if this lag is sufficient, the oscillations willbe
unstable—that is, will increase indefinitely.

Increasing oscillations due to aerodynamic damping of
the rudder.—In figure 1 the damping and the frequency of
the oscillation as represented by values of # and » are shown
as functions of the floating-moment and restoring-moment
parameters of the rudder.

The values shown for % and v are related to the damping
and the period of the lateral oscillation by the equations

P=6.28/v
Ty4=—0.69/u

where the period P is in terms of the number of semispan
lengths that the airplane moves for a complete cycle and the
damping T% refers to the number of semispans the airplane
moves before the oscillation is damped to one-half its original
amplitude.

In figure 1 the control system is assumed to be frictionless.
For an average value of the airplane radius of gyration

(Icz=—b> the density ratio employed in figure 1 corresponds

to & wing loading of 25 pounds per square foot for an air-
plane of 40-foot span at sea level. A positive value of G,
corresponds to a stabilizing floating tendency, and a negative
value of C,, corresponds to a stabilizing restoring moment.

The magnitude of C,, is a measure of the control forces
required to deflect the rudder at zero yaw; a Gy, of —0.4, for

example, corresponds to 150 pounds of pedal force for full
deflection of a rudder having an area of 25 square feet and
a chord of 3 feet at an indicated speed of 100 miles per hour.

The oscillation becomes undamped for only positive values
of Gy, and a high degree of aerodyna.mlc balance correspond-

ing to small numerical velues of Ch,. For values of G,

numerically greater than a certain magnitude (in this case
about 0.12) the damping of the oscillation increases with
positive floating tendency as indicated by the curved solid
lines. The frequency of the oscillation increases rapidly
as Gy, is increased, as shown by the dotted lines. The
straight line in the lower quadrant is the line of zero weather-
cock stability with rudder free.

Effect of rudder inertia.—Figure 2 shows the effect of
rudder inertin on the oscillatory stability boundary. The
effect of rudder inertin on the oscillations is destabilizing
but is not very great for reasonable amounts of inerfia, as
was also shown in reference 2. For this reason and for

simpler calculations, rudder inertia has been neglected in

most of the subsequent calculations.

' Effect of mass balance of rudder.—Mass balancing the
rudder has a stabilizing effect on the oscillations, as shown
in figure 3. It should be noted that complete mass balance,
p2,=0, i8 necessary to provide stability at C,=C5,=0.
Mass overbalance, px, negative, is desirable to insure a
margin of stability with complete aerodynamic balance.
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Effect of viscous friction in the control system.—The
destabilizing effect of viscous damping of the rudder for
positive floating tendency is shown for two values of the
airplane inertia in figures 4 and 5. Boundaries for increas-
ing oscillations are drawn for arbitrary increases in the value
of rudder damping derivative. In the figures the dotted
line drawn tangent to these boundaries determines a region
where the oscillations are stable no matter how large the
viscous friction in the rudder system is. This line may be
called the boundary for complete damping. Because the
line passes through or very close to the origin, it corresponds
to a fixed value of theratio of G, to Gy, or the floating ratio
of the control surface. For valuesof thefloatingrationumeri-
cally greater than the critical value corresponding to the
dotted lines of figures 4 and 5—that is, for points above these
lines—the damping may be said to be incomplete because
unstable oscillations may occur if the rudder damping is
great enough. Similarly, for points on figures 4 and 5
below these lines, the damping is said to be complete because,
no matter how great the viscous damping of the rudder, the
oscillations will decay.

When the viscous friction increases beyond a certain value
that depends on the value of C,,, & further increase has a
stabilizing effect. This fact is also shown in figure 6, where
C,, and C,,, are considered as variables and the boundaries
for increasing oscillations are drawn for two values of C,,.
The maximums on the curves correspond to the boundary
for complete damping in figure 5. The value of the aero-
dynamic damping derivative for the rudder is —0.11 and is
indicated by the vertical line. This value is the minimum
amount of rudder damping possible. Any larger value
would, of course, be due to viscous damping in the rudder
control system, such as might be supplied by a dashpot.

The frequency v of the undamped oscillation for points
on the boundaries of figure 6 is shown in figure 7. The
angle ¢ by which the rudder lags behind the yaw motion
and the relative amplitudes of rudder and yaw &y are
plotted on, the same figure. A comparison of figures 6 and
7 indicates that the phase angle corresponding to the point
where the effect of rudder damping is reversed—that is, the
minimums of figure 6—is 45° in both cases. These two
figures are very useful in calculating the amplitudes of the
undamped oscillations built up when solid friction is present.

Steady oscillations produced by solid friction.—If the
effect of viscous friction is destabilizing, as shown in figures
5 and 6, the presence of solid friction will, under certain
conditions, result in steadily maintained oscillations. This
fact can be shown by using the concept of equivalent viscous
friction, which gives the following relation between effective
increase of viscous damping, amount of solid friction, and
amplitude and frequency of the oscillation:

—40,,
ont

. .=
hpi,

This formule is derived in reference 4.
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By use of this relation in conjunction with figure 6, the
action of friction can be explained. If the initial disturbance
8/Ch, is very small, the value of effective C,,, is, according to
the preceding expression, very large and the point represent-
ing this value of (;,, will lie to the left of the appropriate
curve of figure 6. Because this point is in the stable region,
the oscillation will damp out completely. If the initial value
of 3/C, , 18 high enough to place the point on the concave side

of the appropriate curve in figure 6, the motion will be
unstable and the amplitude will increase. This increase in
amplitude decreases the numerical value of the effective
Chp; until the point on figure 6 moves to the right branch of

the curve, Any further increase in amplitude is impossible
because it would bring the point on figure 6 into the stable
region. If the initial value of §/C, is very large, the effective

value of Cy,, i8 numerically very small and the point repre-

senting it on figure 6 will be to the right of the curve, in the
stable region. The amplitude will then decrease and cause
the value of (s, to increase qntﬂ it equals the value at the

right branch of the curve.

In figure 8 the amplitudes corresponding to both branches
of the curves of figure 6 are plotted against the restoring-
moment parameter for two walues of the floating-moment
parameter. As the condition of aerodynamic balance is
approached, the magnitude of the oscillations increases
markedly., When a condition is reached at which the oscil-
lations would increase without solid frietion, they will be
unstable with friction if the initial disturbance is greater
than that corresponding to the left branch of the curves of
figure 6.

The region where steady oscillations can occur is bounded
on one side by the boundary for increasing oscillations with-
out solid friction and on the other by the boundary for com-
plete damping. The variation of the amplitudes of rudder
and yoaw oscillations in this (shaded) region is shown in
figures 9 and 10.

The amplitudes of the steady oscillation are proportional
to the frictional hinge-moment coefficient, as shown in
appendix B. These amplitudes are therefore directly
proportional to the amount of friction and inversely pro-
portional to the square of the indicated speed. Over
most of the region the amplitude is extremely small, even
with relatively large amounts of friction. On a typical
airplane (appendix B) having parameters. corresponding
to the point shown on figure 9 and with & friction moment of
4 foot-pounds, the maximum amplitude of yawing oscillation
occurring when the rudder is freed at 300 miles per hour
amounts to less than 0.5°.

Effect of airplane mass characteristics.—As the moment-
of-inertia ratio pks® of the airplane about the vertical axis
is increased, the region where steady oscillations may take
place is extended but the boundary for increasing oscillations
is unchanged (fig. 11). An increase in moment of inertia
is equivalent o an increase in wing loading if the airplane
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size and mass distribution are held constant. Increased
wing loading therefore increases the likelihood of steady
oscillations due to friction but does not alter the conditions
for unstable oscillations. Additional calculations not shown
here indicate that the region of unstable oscillations is not
altered appreciably by variations in pkz? of from 0.2 to 5.0.

Effect of varying the weathercock stability by changing
the vertical tail area.—The effect of varying the weathercock
stability of an airplane by changing the area of the vertical
tail is shown by figure 12. The effect of changing vertical-
tail area on the weathercock stability and other factors is
as follows:

84S Cry Cope C, Copa Ciy
0.04 —0. 032 —0.076 —0.051 ~—0. 0038 —0.09
.08 —. 064 —.097 —.076 —. 0053 - 11
.10 —. 128 -.130 —. 128 —. 0089 - 14

Effect of rudder effectiveness.—Increase in rudder effec-
tiveness, such as would be obtained, for example, by increas-
ing the ratio of movable to fixed tail surface, has an adverse
effect on the dynamic stability, as shown in figure 13.

" The critical floating ratio varies inversely with rudder

effectiveness.

Summary chart showing the effect of several parameters
on the limiting conditions for steady oscillations.—Rigure 14
summarizes the results of figures 11 to 13 and shows the
effects of four significant parameters on the region where
steady oscillations may take place. The term de./ds in the
abscissa is directly proportional to Chs (reference 1). Addi-
tional values of Cuy and wk;? are included to cover the prac-
tical range of weathercock stability and most of the range
of moment-of-inertia ratio for present-day airplanes. The
smallest value of pkz? shown, 0.926, corresponds to that for
2 wing loading of 25 pounds per square foot at-sea level for
o pursuit airplane having a radius of gyration about the
vertical axis equal to one-sixth the span. If the span of the
airplane were increased by a certain factor, the wing loading
corresponding to a given wpkz? would increase by the same
factor, other conditions remaining constant.

Effect of mass overbalance with solid friction.—It has
already been shown (fig. 3) that mass overbalance of the rud-
der (rudder center of gravity ahead of hinge) has a bene-
ficial effect on the boundary for increasing oscillations. The
effect on the boundary for steady oscillations is also beneficial,
asshown in figure 15. The dotted line corresponds to & mass-
balanced rudder; the full line corresponds to a rudder the
center of gravity of which is 10 percent of the rudder chord
ahead of the hinge and the mass of which is about 1 percent
of the mass of the airplane. This rudder weight is con-
siderably more than usual but could be reduced by increas-
ing the distance between rudder hinge and rudder center of

gravity.
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CONCLUSIONS

The calculations presented in this paper show the existence
of oscillations of constant amplitude in a rudder system hav-
ing friction and certain hinge-moment characteristics. The
charts presented show the conditions that tend to minimize
or eliminate these undesirable oscillations and are intended
as a guide to the design of airplanes having rudders with a
stabilizing floating tendency. The results of these calcula-
tions indicate the following conclusions:

1. A closely balanced rudder having too great a positive
floating tendency will be dynamically unstable if the control
is freed. oo

2. Under conditions of dynamic stability for a rudder with
a positive floating tendency, a continuous oscillation of fixed
amplitude may be caused by friction in the control system.

3. The amplitude of the steady oscillation is proportional
to the amount of friction and, for all practical purposes, the

oscillation may be eliminated by reducing the friction, pro-
vided the aerodynamic balance is not too nearly complete.

4. The amplitude of the steady oscillation is inversely
proportional to the square of the indicated speed.

5. The steady oscillation can be eliminated by using a
sufficiently small floating ratio or by mass overbalance of
the rudder.

6. A positive floating tendency can be used to compensate
for a lack of weathercock stability if the control system is
designed for small friction.

Flight tests will be necessary to indicate the maximum
amount of steady oscillation that is allowable on an airplane.

LancLEY MEMORIAL AERONAUTICAL L.ABORATORY,
NarioNAL Apvisory COMMITTER FOR AERONAUTICS,

Lanerey FieLp, Va., March 4, 1943,



APPENDIX A
EQUATIONS OF MOTION FOR THE CASE OF VISCOUS FRICTION IN THE RUDDER CONTROL SYSTEM

It was shown in reference 3 that the lateral motion of the

center of gravity and the rolling motion may be neglected in -

the analysis of the lateral oscillations with free rudder. The
number of degrees of freedom is thereby reduced to two:
namely, angle of yaw and rudder deflection.

The equations of motion are:

(2/"'k22D2— 0,.D¢D— Gnip) ‘;b'l" (— ONDFD— 0,5)5=0

(@uk+2u 2 ) D*— O‘D*D_ Oh‘,]‘l'
+ (2”'rkr2D2_ OkD‘D—' 01,5)6= 0
Substituting y=2»e and §=Ne in these equations indicates
that \ must be a root of the fourth-degree equation
AMA-BX+ON-ENF=0 . (1)
where
A=4I‘Lk32,“.lkr2
= —2FLk220bD3+2 (0;D5~ Guw).ur]frg"l—zurxJoﬁDg
= _2#k220h3+ C"D&O"DJ— OhWO”DJ
"”‘2."‘7*Icr2 (Ong— Ow) +2l‘r$11013

E=0 Ohﬁ—ObD#O”B—0N0”D5+0'¢0hb6

lpw
F=0,,Chy—Ciy Oy
The boundary for divergence is obtained by setting #=0

and that for increasing oscillations is found by setting
Routh’s discriminant

R=BCE—AE*—FB*=0 ¥)]

The roots of equation (1) can be easily found when equation
(2) is satisfied; in this case the values of A corresponding to
the undamped oscillation are

A=tiv=+iE/B

The amplitude ratio and phase difference between rudder
and yaw for the undamped oscillation can be found by
substituting i» for A in the expression

© 2ukN—-Cup A—Ch,
g™ t-Cry

which may be written as p-Fig. Then the amplitude ratio
5[y = +/p*+¢* and the angle of lag e of § behind ¢ is equal to
—tan1 L.

It C,, and G,y are considered as variables and all other
parameters held constant except s, which is proportional
to-Cy,, curves of the type in figures 1 to 3 result from the
relations R=0 and F=0. If the rudder moment of inertia
is neglected, considerable simplification. in the expression
for R results. Equation (2) then reduces to

R=CE—-FB=0

If Ch,, is considered as a variable, in addition to G,
and Gy, & family of curves can be drawn, as on figures 4

and 5. The envelope of the curves in these figures can be
found by solving simultaneously the equations

R=CE—FB=0
and
dR
ao,,m"o

The result is a relation between Gy, and G, The straight
lines giving the boundary for complete damping on figures
4 and 5 were obtained in this way. This boundary, deter-
mines the region where an increase of the viscous demping
parameter —C,,, can cause dynamic instability and- is of -
significance in determining the effect of solid friction.

-1569



APPENDIX B
TREATMENT OF SOLID FRICTION IN CONTROL SYSTEM

APPROXIMATE METHOD OF CALCULATING AMPLITUDES
OF STEADY OSCILLATIONS

Previous work (reference 5) has shown that certain
dynamical systems can, in the presence of solid friction,
build up constant-amplitude oscillations that would not
exist in the absence of friction. This work, however, was
limited to the case of continuous motion of the rudder—
that is, motion in which the rudder does not stop moving
during each cycle. The effect of friction in the case of
discontinuous motion has been discussed in the previously
mentioned document by Schairer and Bush of Boeing Air-
craft Co. The main results of their analysis agree, in general,
with this report but do not include as many factors and
do not agree quantitatively with the present work.

It is shown in the body of this report by approximating
the solid friction by an equivalent viscous friction that,
if viscous friction is destabilizing, solid friction will result
in constant-amplitude oscillations. The amplitude of
the oscillations is given by

—

6 __ 4
_(J‘y_t,} ﬂ'vobmf

where Chp,_ is the value of the viscous damping required
to make R=0 minus the value of Cap; due to aerodynamic
damping of the rudder. This expression for the amplitude
in terms of the amount of solid friction, the amount of
viscous friction, and the frequency is derived in reference 4.

NUMERICAL EXAMPLE USING APPROXIMATE METHOD

The calculation of the amplitude of the steady oscillation
due to solid friction will now be made for a specific airplane
having the following characteristics:

The other parameters are the same as those listed in the
section on “Method of Analysis.” .
The point representing these values is indicated on figures
9 and 10 by a crossed circle. In order to find the value of
Oy, for R=0, let C, == and calculate the coefficients of
equation (1). The following values are obtained:
A=0
=—3.704z
C=0.742—0.097z
E=0.0419—0.064z
F=0.0356
R=CE—FB=0.006204x*-}0.0803z-}-0.03109=0
160

Value of ¢ to e::alcll(;'ing Ctgrgsmpomliglnxig
oscillation conditions
z —0.399 —12.65
B 1.470 46.48
E L0674 8447
o=~/E/B .2138 .1348
Ciaps, —. 280 —12.4
Yo, 20.6 .70
v 1.4 .18
v/Cy 4.6 4.2

The values in the last column correspond to the minimum
initial disturbance necessary for building up the oseillation
to & constant amplitude.

Any disturbance greater than 0.76 radian of rudder angle
and 4.2 radiens of yaw angle per frictional hinge-moment
coefficient will therefors build up to a steady oscillation the
amplitudes of which are 20.6 for the rudder and 14.6 for the
yaw angle, in the same units.

These nondimensional values can be expressed in physical
units as follows: If the rudder dimensions, frictional hinge
moment, and indicated speed are

Rudder aresa, S, 8q b eceaaa—a- 18
Rudder chord, ¢, ft- s 3
Frictional hinge moment, Hy, ft-1b___ . ___ . ________.._. 4
Airspeed, ¥V, mph_ ___ oo, 300
Wing span, b, £t e 42, 4
then
. H o
Ve %pV’S,c,=O'OOO322

¥=14.6X0.000322 X 57.3=0.26°
and
6=1.40.26=0.36°

for the amplitudes of the steady oscillation, and

U= 0.26_ °
Yv=4.2X 73 =0.074

S=0.76><3—§§=0.014°

for the minimum disturbance required to start the oscillation.
In this case, it is seen that the steady oscillation, having a
maximum amplitude of less than 0.5°, would hardly be per-
ceptible in flight.

The period of the steady oscillation is

2= 42.4X60

02138330088 142 sec
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FIGURE 106.—Motion of rudder and airplane under the influence of solid friction in the rudder control system.

COMPARISON WITH MORE EXACT CALCULATION OF THE EFFECT
OF SOLID FRICTION ON THE MOTION

In order to check the approximate theory, a step-by-step
calculation of the rudder motion following certain initial
disturbances was made for two conditions. The results of
these calculations are shown in figures 16 and 17. Each
time the rudder motion stopped the rudder became locked
by the friction and the subsequent motion was calculated
for that condition until the force on the rudder exceeded the
force of friction, when the rudder moved back and another
step in the calculations was made. The steps in the calcula-

tion are thus of two alternating kinds: rudder-fixed motion
and rudder-free motion. The motion of the rudder under
these conditions has flat-top peaks as shown in the figures
and also in flight records.

Figure 16 shows the motion corresponding to the numerical

‘example given in the previous section. The motion without

solid friction is shown for comparison. An arbitrarily chosen
initial displacement in yaw was taken. The effect of friction
in causing the motion to build up is clearly shown. The
vertical lines on the right of the figure give the amplitudes
as previously calculated by the approximate method.
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FIGURE 17.—Motion of rudder and sirplane under the influence of solid friction in the rudder control system.

Figure 17 shows the motion for an airplane having zero
weathercock stability for two different disturbances. The
motion following the large disturbance consists of damped
oscillations; the motion following the small disturbance leads
to slightly increasing oscillations. It must be presumed,
therefore, that each disturbance will eventually reach the
same constant value. The amplitudes calculated by the
approximate method are again shown at the right side of
the figure.

The agreement between the amplitudes as calculated by
the exact and the approximate methods is better in figure 17
than in figure 16. In both cases the approximate calcula-
tion gives the higher value. The agreement should be con-
sidered good in view of the approximations involved and, in

any case, the values given by the approximate method are
on the conservative side.
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